GLOBAL CONTROLLABILITY OF SAMPLED-DATA BILINEAR TIME-DELAY SYSTEMS \dagger

D. M. OLENCHIKOV
Izhevsk
e-mail: diol@idz.ru
(Received 17 February 2003)

The concept of the universal control of a controilable sampled-data bilinear time-delay system is introduced. A universal control is independent of the initial state, and the system may be steered from any initial state at time t_{0} to zero at the time t_{1}. A criterion of global controllability is obtained. As an example, the control of a two-link oscillatory system is considered. © 2004 Elsevier Ltd. All rights reserved.

Problems of the control dynamical objects using sampled-data control have many applications. For a survey of the main publications on sampled-data systems see $[1,2] \div$

1. DEFINITION OF THE SOLUTION OF A SAMPLED-DATA LINEAR TIME-DELAY SYSTEM

Definition 1.1. A sampled-data linear time-delay system (a sampled-data system) is defined to be the following expression

$$
\begin{equation*}
\dot{x}=A(t) x+\sum_{i=1}^{k} \delta\left(t-\tau_{i}\right) H_{i}(t) x(t-0) \tag{1.1}
\end{equation*}
$$

where $x(\cdot): R \rightarrow \mathbb{C}^{n}\left(\right.$ or $\left.\mathbb{R}^{n}\right), A(t)$ and $H_{i}(t)$ are square matrices of order n with continuous complexvalued or real-valued elements, $\delta(\cdot)$ is the delta function, and $\tau_{1} \leq \tau_{2} \leq \ldots \leq \tau_{k}$ are the data points.

The following initial condition is specified at the point t_{0}

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0}, \quad \text { where } \quad t_{0}=\tau_{0}<\tau_{1} \tag{1.2}
\end{equation*}
$$

Let $X(t, s)$ denote the Cauchy matrix of the system $\dot{x}=A(t) x$. We define the influence matrix of the i th pulse as the matrix $E+H_{i}\left(\tau_{i}\right)$. Intuitively, this means that if x_{0} is the value of some solution of system (1.1) "before" the i th pulse, then $\left(E+H_{i}\left(\tau_{i}\right)\right) x_{0}$ is the value of the solution "after" the i th pulse. Then the solution of system (1.1) satisfying the initial condition (1.2) will have the form

$$
x(t)=X\left(t, \tau_{k(t)}\right) \prod_{i=1}^{k(t)}\left[\left(E+H_{i}\left(\tau_{i}\right)\right) X\left(\tau_{i}, \tau_{i-1}\right)\right] x_{0}
$$

where $k(t)$ is the maximum subscript i such that $\tau_{i}<t$. Henceforth the product symbol is understood in the sense of left matrix multiplication, that is, $\prod_{i=1}^{k} A_{i}=A_{k} A_{k-1} \ldots A_{1}$. Using the Heaviside function,
one can eliminate the function $k(t)$ and give the following equivalent definition of the solution of a sampled-data system.

Definition 1.2 A solution of the sampled-data Cauchy problem (1.1), (1.2) is a function

$$
\begin{equation*}
x(t)=X\left(t, \tau_{k}\right) \prod_{i=1}^{k}\left[\left(E+\chi\left(t-t_{i}\right) H_{i}\left(\tau_{i}\right)\right) X\left(\tau_{i}, \tau_{i-1}\right)\right] x_{0} \tag{1.3}
\end{equation*}
$$

where $\chi(\cdot)$ is the Heaviside function: $\chi(t)=0$ for $t<0, \chi(t)=1$ for $t>0$.
At the points τ_{i} the function $x(\cdot)$ is undefined (if necessary, it may be defined be left or right continuity). It is important to note that the definition of a sampled-data system and its solution explicitly involves the numbering of the points τ_{i}, which reflects the order of the sequence of pulses. In that connection, points τ_{i} cannot be interchanged even if they coincide, since the product of the corresponding matrices $E+H_{i}\left(\tau_{i}\right)$ is generally non-commutative. This means that a change in the order of the pulses concentrated at one data point may change the solution of the system.

Consider a family of systems

$$
\begin{equation*}
\dot{x}=A(t) x+\sum_{i=1}^{k} \delta_{i}\left(t-\tilde{\tau}_{i}\right) H_{i}(t) x\left(\tilde{\tau}_{i}-\varepsilon_{2}\right) \tag{1.4}
\end{equation*}
$$

which depend on the numbers $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$, instants of time $\tilde{\tau}_{i}$ and functions $\delta_{i}(\cdot)$, and satisfying the following approximation conditions: (1) the functions $\delta_{i}(\cdot)$ are continuous throughout $(-\infty, \infty) ; \delta_{i}(t) \geq 0$ for all $t ; \delta_{i}(t)=0$ for all $t \notin\left(-\varepsilon_{1}, \varepsilon_{1}\right)$, and $\int_{\varepsilon_{1}}^{\varepsilon_{1}} \delta_{i}(t) d t=1$; (2) $\varepsilon_{2}>\varepsilon_{1}>0$; (3) $\left|\widetilde{\tau}_{i}-\tau_{i}\right| \leq \varepsilon_{3}$ for all $i=1, \ldots, k$; (4) $\left|\tilde{\tau}_{i+1}-\tilde{\tau}_{i}\right|>\varepsilon_{1}+\varepsilon_{2}$ for all $i-0, \ldots, k-1$.

Condition 1 describes the approximation of a delta function with pulse half-width ε_{1}. Condition 2 means that the value of the solution is measured at a time $\tilde{\tau}_{i}-\varepsilon_{2}$, and then the pulse in the interval $\left[\tilde{\tau}_{i}-\varepsilon_{1}, \widetilde{\tau}_{i}+\varepsilon_{1}\right]$ is produced on the basis of the measured values, except that the delay ε_{2} exceeds the pulse half-width ε_{1}. The third condition introduces an estimate of the closeness of the points $\tilde{\tau}_{i}$ and τ_{i}. The fourth condition means that the next value of the solution is measured after completion of the previous pulse.

Over the interval $\left[t_{0}, \tilde{\tau}_{1}-\varepsilon_{1}\right]$ all the functions $\delta_{i}(\cdot)$ vanish, and therefore solutions of system (1.4) are understood in the classical sense and are identical with the solutions of the system $\dot{x}=A(t) x$. Moreover, the value of the solution $x\left(\widetilde{\tau}_{1}-\varepsilon_{2}\right)$ has already been defined, so that in the interval $\left[\tilde{\tau}_{1}-\varepsilon_{1}, \tilde{\tau}_{1}+\varepsilon_{1}\right]$ the solutions of system (1.4) are also understood in the classical sense. Then, proceeding in a similar way, the solutions are defined over the interval $\left[\tilde{\tau}_{1}+\varepsilon_{1}, \tilde{\tau}_{2}-\varepsilon_{1}\right]$, over the interval $\left[\tilde{\tau}_{2}-\varepsilon_{1}, \tilde{\tau}_{2}+\varepsilon_{1}\right]$, and so on.

Definition 1.3. The solutions of system (1.1) are approximated by solutions of system (1.4) uniformly on a set I if, for any arbitrarily small $\varepsilon>0$ and any vector x_{0}, numbers r_{1}, r_{2}, r_{3} and r_{4} exist such that, if $\left|\varepsilon_{1}\right| \leq r_{1},\left|\varepsilon_{2}\right| \leq r_{2},\left|\varepsilon_{3}\right| \leq r_{3},\left|\tilde{x}_{0}-x_{0}\right| \leq r_{4}$ and the approximation conditions hold, then $|\tilde{x}(t)-x(t)|<\varepsilon$ for all t in the set I. Here $\widetilde{x}(\cdot)$ is the solution of system (1.4) with initial condition $x\left(t_{0}\right)=\widetilde{x}_{0}$, and $x(\cdot)$ is the solution of the Cauchy sampled-data system (1.1), (1.2).

Theorem 1.1. For any $r>0$ and $T>t_{0}$, the solution of system (1.1) is approximated by solutions of system (1.4) uniformly in the set

$$
I=\left[t_{0}, T\right] \backslash \bigcup_{i=1}^{m}\left(\tau_{i}-r, \tau_{i}+r\right)
$$

Proof. Fix arbitrary $r>0$ and $T>t_{0}$. Let $\tilde{x}(\cdot)$ be the solution of system (1.4) with initial condition $x\left(t_{0}\right)=\widetilde{x}_{0}$ and $x(\cdot)$ the solution of the sampled-data Cauchy system (1.1), (1.2) defined by formula (1.3). For sufficiently small $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3}, the inclusion relation $\left[\widetilde{\tau}_{i}-\varepsilon_{2}, \widetilde{\tau}_{i}+\varepsilon_{1}\right] \subseteq\left(\tau_{i}-r, \tau_{i}+r\right)$ holds. Then, by the Cauchy formula, for all $t \in I$.

$$
\begin{equation*}
\tilde{x}(t)=X\left(t, \tilde{\tau}_{k}+\varepsilon_{1}\right) \prod_{i=1}^{k}\left[\left(X\left(\tilde{\tau}_{i}+\varepsilon_{1}, \tilde{\tau}_{i}-\varepsilon_{2}\right)+\chi\left(t-\tau_{i}\right) B_{i}\right) X\left(\tilde{\tau}_{i}-\varepsilon_{2}, \tilde{\tau}_{i-1}+\varepsilon_{1}\right)\right] X\left(t_{0}+\varepsilon_{1}, t_{0}\right) \tilde{x}_{0} \tag{1.5}
\end{equation*}
$$

where

$$
B_{i}=\int_{\tilde{\tau}_{i}-\varepsilon_{2}}^{\tilde{\tau}_{i}+\varepsilon_{1}} \delta_{i}\left(s-\tilde{\tau}_{i}\right) X\left(\tilde{\tau}_{i}+\varepsilon_{1}, s\right) H_{i}(s) d s
$$

Since the Cauchy matrix is continuous, the following relations holds as $\varepsilon_{1} \rightarrow 0, \varepsilon_{2} \rightarrow 0, \varepsilon_{3} \rightarrow 0$ and $\tilde{\tau}_{i} \rightarrow \tau_{i}$

$$
\begin{aligned}
& X\left(t, \tilde{\tau}_{k}+\varepsilon_{1}\right) \rightarrow X\left(t, \tau_{k}\right), \quad X\left(\tilde{\tau}_{i}+\varepsilon_{1}, \tilde{\tau}_{i}-\varepsilon_{2}\right) \rightarrow E \\
& X\left(\tilde{\tau}_{i}-\varepsilon_{2}, \tilde{\tau}_{i-1}+\varepsilon_{1}\right) \rightarrow X\left(\tau_{i}, \tau_{i-1}\right), \quad X\left(t_{0}+\varepsilon_{1}, t_{0}\right) \rightarrow E
\end{aligned}
$$

and the convergence is uniform to t on the set I.
Applying the mean-value theorem for integrals to each element of the matrix B_{i}, we obtain

$$
B_{i}=P(\bar{\xi}) \int_{\tilde{\tau}_{i}-\varepsilon_{2}}^{\bar{\tau}_{i}+\varepsilon_{1}} \delta_{i}\left(s-\tilde{\tau}_{i}\right) d s=P(\bar{\xi})
$$

where $P(\bar{\xi})$ is a matrix whose elements are the values of the elements of the matrices $X\left(\bar{\tau}_{i}+\varepsilon_{1}, s\right) H_{i}(s)$ at certain points $\xi_{j, k} \in\left[\tilde{\tau}_{i}-\varepsilon_{2}, \tilde{\tau}_{i}+\varepsilon_{1}\right]$. Then, since the matrices X and H are continuous, we conclude that the matrix $P(\bar{\xi})$ tends uniformly to $H_{i}\left(\tau_{i}\right)$ as $\varepsilon_{1} \rightarrow 0, \varepsilon_{2} \rightarrow 0, \varepsilon_{3} \rightarrow 0$ and $\widetilde{\tau}_{i} \rightarrow \tau_{i}$. Consequently, $\widetilde{x}(t)$ converges uniformly on I to $x(t)$, which proves the theorem.

An analogous theorem was proved in $[3,4]$ using the technique of non-standard analysis.

2. SAMPLED-DATA BILINEAR TIME-DELAY CONTROLLABLE SYSTEMS

We shall consider a controllable sampled-data bilinear time-delay system (controllable sampled-data system) over the interval $I=\left[t_{0}, t_{1}\right]$

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+B(t) U(t) x(t-0) \tag{2.1}
\end{equation*}
$$

where $A(t)$ and $B(t)=\left(b_{1}(t), \ldots, b_{m}(t)\right)$ are $n \times n$ and $n \times m$ matrices with continuous elements, and $U(\cdot)$ belongs to the set of admissible controls (see the next definition).

Definition 2.1. An admissible control $U(\cdot)$ is defined as any finite sequence of pairs $\left\{\left(\tau_{k}, U_{k}\right)\right\}_{k=1}^{p}$ such that U_{k} are $m \times n$ matrices and $t_{0}=\tau_{0}<\tau_{1} \leq \tau_{2} \leq \ldots \leq \tau_{p}<t_{1}$. In that situation we use the formal notation

$$
\begin{equation*}
U(t)=\sum_{k=1}^{p} \delta\left(t-\tau_{k}\right) U_{k} \tag{2.2}
\end{equation*}
$$

Definition 2.2. A solution of the sampled-data Cauchy system (2.1), (1.2) is, by Definition 1.2, a function

$$
x\left(t, x_{0}, U\right)=X\left(t, \tau_{p}\right) \prod_{k=1}^{p}\left[\left(E+\chi\left(t-\tau_{k}\right) B\left(\tau_{k}\right) U_{k}\right) X\left(\tau_{k}, \tau_{k-1}\right)\right] x_{0}
$$

Let

$$
x\left(\tau_{j}-0, x_{0}, U\right)=X\left(\tau_{j}, \tau_{j-1}\right) \prod_{k=1}^{j-1}\left[\left(E+B\left(\tau_{k}\right) U_{k}\right) X\left(\tau_{k}, \tau_{k-1}\right)\right] x_{0}
$$

denote the value of the solution $x\left(\cdot, x_{0}, U\right)$ "before" the pulse concentrated at the point τ_{j}. Let

$$
x\left(\tau_{j}+0, x_{0}, U\right)=\left(E+B\left(\tau_{j}\right) U_{j}\right) x\left(\tau_{j}-0, x_{0}, U\right)
$$

denote the value of the solution $x\left(\cdot, x_{0}, U\right)$ "after" the pulse concentrated at the point τ_{j}. In the case when all the τ_{k} are different, these are simply the left and right limits of the function $x\left(\cdot, x_{0}, U\right)$ at the point τ_{j}.

3. THE GLOBAL CONTROLLABILITY SET

Definition 3.1. We define the controllability set of system (2.1) on I to be the set of all vectors x_{0} such that $x\left(t_{1}, x_{0}, U\right)=0$ for some admissible control U.

Given system (2.1), we construct the sets

$$
\begin{equation*}
M_{j}=\sum_{s \in\left(t_{0}, t_{1}\right)}\left\langle X\left(t_{0}, s\right) b_{j}(s)\right\rangle, \quad M=\sum_{j=1}^{m} M_{j} \tag{3.1}
\end{equation*}
$$

where the angular brackets denote the linear span of the vector and the summation symbol denotes the sum of linear subspaces, understood in the following sense: $h \in M_{j}$ if and only if a finite number of points $\tau_{1}, \ldots, \tau_{q}$, subscripts j_{1}, \ldots, j_{q} and vectors h_{1}, \ldots, h_{q} exist such that $t_{k} \in\left(t_{0}, t_{1}\right), h=h_{1}+\ldots+h_{q}$, where $h_{k} \in\left\langle X\left(t_{0}, \tau_{k}\right) b_{j_{k}}\left(\tau_{k}\right)\right\rangle$.

Lemma 3.1. The controllability set of system (2.1) on I is subset of M.
Proof. Let x_{0} be an arbitrary vector such that $x\left(t_{1}, x_{0}, U\right)=0$ for some admissible control $U(t)(2.2)$.
For any matrix U_{k} we have the representation

$$
\left(E+B\left(\tau_{k}\right) U_{k}\right) x_{0}=x_{0}+\sum_{j=1}^{m} c_{k, j} b_{j}\left(\tau_{k}\right), \quad \operatorname{col}\left(c_{k, 1}, \ldots, c_{k, m}\right)=U_{k} x_{0}
$$

Then

$$
\begin{aligned}
& x\left(\tau_{1}-0, x_{0}, U\right)=X\left(\tau_{1}, t_{0}\right) x_{0} \\
& x\left(\tau_{1}+0, x_{0}, U\right)=\left(E+B\left(\tau_{1}\right) U_{1}\right) x\left(\tau_{1}-0, x_{0}, U\right)=X\left(\tau_{1}, t_{0}\right) x_{0}+\sum_{j=1}^{m} c_{1, j} b_{j}\left(\tau_{1}\right) \\
& x\left(\tau_{2}-0, x_{0}, U\right)=X\left(\tau_{2}, \tau_{1}\right) x\left(\tau_{1}+0, x_{0}, U\right) \\
& x\left(\tau_{2}+0, x_{0}, U\right)=X\left(\tau_{2}, t_{0}\right) x_{0}+\sum_{j=1}^{m}\left[c_{1, j} X\left(\tau_{2}, \tau_{1}\right) b_{j}\left(\tau_{1}\right)+c_{2, j} b_{j}\left(\tau_{2}\right)\right]
\end{aligned}
$$

Continuing in the same way, we find by induction that

$$
\begin{aligned}
& x\left(\tau_{p}+0, x_{0}, U\right)=X\left(\tau_{p}, t_{0}\right) x_{0}+\sum_{k=1}^{p} \sum_{j=1}^{m} c_{k, j} X\left(\tau_{p}, \tau_{k}\right) b_{j}\left(\tau_{k}\right) \\
& x\left(t_{1}, x_{0}, U\right)=X\left(t_{1}, t_{0}\right) x_{0}+\sum_{k=1}^{p} \sum_{j=1}^{m} c_{k, j} X\left(t_{1}, \tau_{k}\right) b_{j}\left(\tau_{k}\right)=0
\end{aligned}
$$

Multiplying the last equality on the left by $X\left(t_{0}, t_{1}\right)$, we get

$$
x_{0}=-\sum_{k=1}^{m} \sum_{j=1}^{p} c_{k, j} X\left(t_{0}, \tau_{k}\right) b_{j}\left(\tau_{k}\right)
$$

Consequently, $x_{0} \in M$.
Lemma 3.2. An admissible control U exists such that $x\left(t_{1}, x_{0}, U\right)=0$ for all $x_{0} \in M$.
Proof. Since $M \subseteq \mathbb{R}^{n}$, it follows that a number $p \leq n$, points $\tau_{1}, \ldots, \tau_{p}$ in $\left[t_{0}, t_{1}\right]$, and subscripts j_{1}, \ldots, j_{p} exist such that $M=\sum_{i=1}^{p}\left\langle X\left(t_{0}, \tau_{i}\right) b_{j}\left(\tau_{i}\right)\right\rangle$; in addition, the system of vectors $\left\{X\left(t_{0}, \tau_{i}\right) b_{i}\left(\tau_{i}\right)\right\}_{i=1}^{p}$ is linearly independent.

Consider the control

$$
U(t)=\sum_{k=1}^{p} \delta\left(\tau_{k}\right) U_{k}
$$

in which all the rows of the matrices U_{k} except the j_{k} th consist of zeros, while the j_{k} th row is $\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right)$, where $\alpha_{k, j}$ are numbers satisfying the linear system of equations

$$
\begin{equation*}
\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right)\left(X\left(\tau_{k}, \tau_{k}\right) b_{j_{k}}\left(\tau_{k}\right), \ldots, X\left(\tau_{k}, \tau_{p}\right) b_{j_{p}}\left(\tau_{p}\right)\right)=(-1,0, \ldots, 0) \tag{3.2}
\end{equation*}
$$

Since the system of vectors $\left\{X\left(t_{0}, \tau_{i}\right) b_{j}\left(\tau_{i}\right)\right\}_{i=1}^{p}$ is linearly independent, the system $\left\{X\left(\tau_{k}, \tau_{i}\right) b_{j}\left(\tau_{i}\right)\right\}_{i=k}^{p}$ is also linearly independent. Consequently, system (3.2) is solvable, that is, a control U exists (though it need not be unique).
By the construction of the control U, we obtain

$$
\begin{aligned}
& B\left(\tau_{k}\right) U_{k}=b_{j_{k}}\left(\tau_{k}\right)\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right) \\
& \left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right) X\left(\tau_{k}, \tau_{i}\right) b_{j_{i}}\left(\tau_{i}\right)=\left\{\begin{array}{lll}
-1, & \text { if } & i=k \\
0, & \text { if } & i>k
\end{array}\right.
\end{aligned}
$$

Then

$$
\left(E+B\left(\tau_{k}\right) U_{k}\right) X\left(\tau_{k}, \tau_{i}\right) b_{j_{i}}\left(\tau_{i}\right)=\left\{\begin{array}{l}
0, \quad \text { if } \quad i=k \tag{3.3}\\
X\left(\tau_{k}, \tau_{i}\right) b_{j_{i}}\left(\tau_{i}\right), \quad \text { if } \quad i>k
\end{array}\right.
$$

Let $x_{0} \in M$ be an arbitrary vector. Then, using relation (3.3), we get

$$
\begin{aligned}
& x\left(\tau_{1}-0, x_{0}, U\right) \in \sum_{k=1}^{p}\left\langle X\left(\tau_{1}, \tau_{k}\right) b_{j_{k}}\left(\tau_{k}\right)\right\rangle \\
& x\left(\tau_{1}+0, x_{0}, U\right)=\left(E+B\left(\tau_{1}\right) U_{1}\right) x\left(\tau_{1}-0, x_{0}, U\right) \in \sum_{k=2}^{p}\left\langle X\left(\tau_{1}, \tau_{k}\right) b_{j_{k}}\left(\tau_{k}\right)\right\rangle \\
& x\left(\tau_{2}-0, x_{0}, U\right)=X\left(\tau_{2}, \tau_{1}\right) x\left(\tau_{1}+0, x_{0}, U\right) \in \sum_{k=2}^{p}\left\langle X\left(\tau_{2}, \tau_{k}\right) b_{j_{k}}\left(\tau_{k}\right)\right\rangle \\
& x\left(\tau_{2}+0, x_{0}, U\right)=\left(E+B\left(\tau_{2}\right) U_{2}\right) x\left(\tau_{2}-0, x_{0}, U\right) \in \sum_{k=3}^{p}\left\langle X\left(\tau_{2}, \tau_{k}\right) b_{j_{k}}\left(\tau_{k}\right)\right\rangle \\
& \cdots \\
& x\left(\tau_{p}-0, x_{0}, U\right) \in\left\langle X\left(\tau_{p}, \tau_{p}\right) b_{j_{p}}\left(\tau_{p}\right)\right\rangle=\left\langle b_{j_{p}}\left(\tau_{p}\right)\right\rangle \\
& x\left(\tau_{p}+0, x_{0}, U\right)=\left(E+B\left(\tau_{p}\right) U_{p}\right) x\left(\tau_{p}-0, x_{0}, U\right) \in\{0\} \\
& x\left(t_{1}, x_{0}, U\right)=X\left(t_{1}, \tau_{p}\right) x\left(t_{p}+0, x_{0}, U\right)=0
\end{aligned}
$$

Since x_{0} was an arbitrary vector, this proves the lemma.
Theorem 3.1. The set M is the controllability set of system (2.1) on I. Moreover, an admissible control U exists such that $x\left(t_{1}, x_{0}, U\right)=0$ for all $x_{0} \in M$.

The assertion of Theorem 3.1 follows from the two preceding lemmas.
Theorem 3.1 implies that in sampled-data systems, unlike the classical case, a single admissible control U exists that will steer the system from any initial state in M at time t_{0} to zero at time t_{1}, and moreover neither the times τ_{k} nor the matrices U_{k} occurring in U depend on the initial state x_{0}. In order to emphasize this fact, we shall call the controllability set the global controllability set, and the control U in the assertion of Theorem 3.1 will be called a universal control.
Note that the proof of Theorem 3.1 readily implies a constructive way of obtaining a universal control U.

Definition 3.2. System (2.1) is said to be globally controllable on I if its global controllability set is \mathbb{R}^{n}.
Definition 3.3. We shall say that a system is globally controllable over the interval $\left[t_{0}-0, t_{1}+0\right]$ if it is globally controllable over any interval $\left[\tilde{t}_{0}, \tilde{t}_{1}\right]$ such that $\tilde{t}_{0}<t_{0}$ and $\tilde{t}_{1}>t_{1}$.

Consider the matrix

$$
D_{n}=\left\|\begin{array}{cccc}
f_{1, j_{1}}\left(\tau_{1}\right) & f_{1, j_{2}}\left(\tau_{2}\right) & \ldots & f_{1, j_{n}}\left(\tau_{n}\right) \\
f_{2, j_{1}}\left(\tau_{1}\right) & f_{2, j_{2}}\left(\tau_{2}\right) & \ldots & f_{2, j_{n}}\left(\tau_{n}\right) \\
\vdots & \vdots & & \vdots \\
f_{n, j_{1}}\left(\tau_{1}\right) & f_{n, j_{2}}\left(\tau_{2}\right) & \ldots & f_{n, j_{n}}\left(\tau_{n}\right)
\end{array}\right\|
$$

Lemma 3.3 (on linearly independent functions). A necessary and sufficient condition for the functions $f_{1}(t), f_{2}(t), \ldots, f_{n}(t): I \rightarrow \mathbb{R}^{m}$ to be linearly independent over the set I is that points $\tau_{1}, \ldots, \tau_{n} \in I$ and subscripts j_{1}, \ldots, j_{n} exist such that $\operatorname{det} D_{n} \neq 0$.

Proof. Sufficiency is obvious. We will prove necessity by induction on n. The assertion is obvious for $n=1$. Supposing it is true for $n<k$, we prove it for $n=k$. Let the system of functions $\left\{f_{i}(t)\right\}_{i=1}^{k}$ be linearly independent of I. Consequently, by the induction hypothesis, system of points $\left\{\tau_{i}\right\}_{i=1}^{k-1}$ and subscripts $\left\{j_{i}\right\}_{i=1}^{k-1}$ exist such that $\operatorname{det} D_{k-1} \neq 0$. Then the last row of the matrix

$$
\left\|\begin{array}{cc}
f_{1, j_{1}} \ldots & f_{1, j_{k-1}}\left(\tau_{k-1}\right) \\
\vdots & \vdots \\
f_{k, j_{1}} \ldots & f_{k, j_{k-1}}\left(\tau_{k-1}\right)
\end{array}\right\|
$$

may be expressed uniquely as a linear combination of the preceding rows. Denote the coefficients of this linear combination by c_{1}, \ldots, c_{k-1}. Since the functions f_{1}, \ldots, f_{k} are linearly independent of I, a point $\tau_{k} \in I$ exists such that

$$
f_{k}\left(\tau_{k}\right) \neq c_{1} f_{1}\left(\tau_{k}\right)+\ldots+c_{k-1} f_{k-1}\left(\tau_{k}\right)
$$

Then there is a subscript j_{k} such that

$$
f_{k, j_{k}}\left(\tau_{k}\right) \neq c_{1} f_{1, j_{k}}\left(\tau_{k}\right)+\ldots+c_{k-1, j_{k}} f_{k-1}\left(\tau_{k}\right)
$$

Consequently, since the coefficients c_{i} are unique, the rows of the matrix D_{n} are linearly independent, and its determinant does not vanish.

Now consider the rows the matrix $X\left(t_{0}, s\right) B(s)$ as functions of the variable s. Taking a maximum linearly independent subsystem of rows in the interval $\left[t_{0}, t_{1}\right]$, we express $X\left(t_{0}, s\right) B(s)$ as

$$
X\left(t_{0}, s\right) B(s)=h_{1} f_{1}(s)+h_{2} f_{2}(s)+\ldots+h_{q} f_{q}(s)
$$

where h_{1}, \ldots, h_{q} are certain constant vectors and the row-functions $f_{1}(\cdot), \ldots, f_{q}(\cdot)$ are linearly independent in the interval $\left[t_{0}, t_{1}\right]$.

Theorem 3.2 The global controllability set M is the linear span $\left\langle h_{1}, \ldots, h_{q}\right\rangle$.
Proof. By formula (3.1) it is obvious that $M \subseteq\left\langle h_{1}, \ldots, h_{q}\right\rangle$. We will prove that $\left\langle h_{1}, \ldots, h_{q}\right\rangle \subseteq M$. Let h be an arbitrary vector such that $h=\alpha_{1} h_{1}+\ldots+\alpha_{q} h_{q}$. Since the functions $f_{k}(\cdot)$ are linearly independent, it follows by Lemma 3.3 that points s_{1}, \ldots, s_{q} and subscripts j_{1}, \ldots, j_{q} exist such that the matrix

$$
D=\left\lvert\, \begin{array}{ccc}
f_{1, j_{1}}\left(s_{1}\right) & \ldots & f_{1}\left(s_{q, j_{q}}\right) \\
\vdots & & \vdots \\
f_{q, j_{1}}\left(s_{1}\right) & \ldots & f_{q}\left(s_{q, j_{q}}\right)
\end{array}\right. \|
$$

is non-singular. Then

$$
X\left(t_{0}, s_{k}\right) b_{j_{k}}\left(s_{k}\right)=\sum_{i=1}^{q} h_{i} f_{i, j_{k}}\left(s_{k}\right)
$$

Fig. 1
Equating the coefficients of the vectors h_{i}, we get

$$
h=\sum_{k=1}^{q} c_{k} X\left(t_{0}, s_{k}\right) b_{j_{k}}\left(s_{k}\right)
$$

where the constants c_{k} satisfy the linear system of equations

$$
\operatorname{Dcol}\left(c_{1}, \ldots, c_{q}\right)=\operatorname{col}\left(\alpha_{1}, \ldots, \alpha_{q}\right)
$$

Consequently, $h \in M_{j}$.
Theorem 3.3. The sampled-data system (2.1) is globally controllable over the interval $\left[t_{0}, t_{1}\right]$ if and only if the corresponding classical system $\dot{x}=A(t) x+B(t) u(t)$ is completely controllable over the interval $\left[t_{0}, t_{1}\right]$.

Proof. It follows from Theorem 3.2 that system (2.1) is globally controllable over I if an only if the rows of the matrix $X\left(t_{0}, s\right) B(s)$ are linearly independent over I. By Krasovskii's criterion [5], linear independence of the rows of the matrix $X\left(t_{0}, s\right) B(s)$ is equivalent to complete controllability of the classical linear control system $\dot{x}=A(t) x+B(t) u(t)$.

Corollary. Over any interval $\left[t_{0}, t_{1}\right]$ the global controllability set of a stationary sampled-data system.

$$
\dot{x}(t)=A x(t)+B U(t) x(t-0)
$$

is the linear span of the columns of the matrices $B, A B, A^{2} B, \ldots, A^{n-1} B$.
Example. Consider the construction illustrated in Fig. 1, consisting of two oscillating elements. Here m_{1} and m_{2} denote the masses of the elements, k_{1} and k_{2} are the stiffnesses, and c_{1} and c_{2} are the viscosity coefficients.

Let x and y denote the displacements of the masses m_{1} and m_{2} relative to their equilibrium positions. By Newton's second law, the motion of the construction is described by the following system of equations

$$
\begin{aligned}
& m_{2} \ddot{x}=-k_{2}(x-y)-c_{2}(\dot{x}-\dot{y}) \\
& m_{1} \ddot{y}=-k_{1} y-c_{1} \dot{y}+k_{2}(x-y)+c_{2}(\dot{x}-\dot{y})+F(t)
\end{aligned}
$$

Putting $z=\operatorname{col}(x, \dot{x}, y, \dot{y})$ and $u(t)=F(t) / m_{1}$, we arrive at a system of linear fourth-order differential equations $\dot{z}=A z+u(t) B$, where

$$
A=\left\|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k_{2}}{m_{2}} & -\frac{c_{2}}{m_{2}} & \frac{k_{2}}{m_{2}} & \frac{c_{2}}{m_{2}} \\
0 & 0 & 0 & 1 \\
\frac{k_{2}}{m_{1}} & \frac{c_{2}}{m_{1}} & -\frac{k_{1}+k_{2}}{m_{1}} & -\frac{c_{1}+c_{2}}{m_{1}}
\end{array}\right\|, \quad B=\left\|\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right\|
$$

Fig. 2

We construct a control $u(t)$ according to the feedback principle, that is

$$
u(t)=U(t) z(t-0)
$$

We then obtain the closed-loop system

$$
\begin{equation*}
\dot{z}(t)=A z(t)+B U(t) z(t-0) \tag{3.4}
\end{equation*}
$$

Fix the parameter values of the construction as

$$
m_{1}=10, \quad m_{2}=7, \quad k_{1}=10, \quad k_{2}=8, \quad c_{1}=0.1, \quad c_{2}=0.2
$$

By the Corollary to Theorem 3.3, system (3.4) will be globally controllable over any interval. We fix the initial time and data times as

$$
t_{0}=0, \quad \tau_{1}=4, \quad \tau_{2}=5, \quad \tau_{3}=6.5, \quad \tau_{4}=8
$$

We construct a universal control $(2.2)(p=4)$ by the method described in the proof of Lemma 3.2. We obtain

$$
\begin{aligned}
& U_{1} \approx(0.4694,-0.3791,-0.6823,-1) \\
& U_{2} \approx(0,0.6026,1.0073,-1) \\
& U_{3} \approx(0,0,0.4186,-1) \\
& U_{4} \approx(0,0,0,-1)
\end{aligned}
$$

In Fig. 2 we show the trajectories of system (3.4) corresponding to the initial condition $z(0)=\operatorname{col}(0$, $1.6,0.8,1.6$) (the solid curves), and the trajectories for the initial condition $z(0)=\operatorname{col}(0,1.6,0.8,-1.6)$ (the dashed curves).

This research was supported by the concourse Centre of Fundamental Natural Science (E00-1.0-5).

REFERENCES

1. FILIPPOV, A. F., Differential Equations with Discontinuous Right-hand Side. Nauka, Moscow, 1985.
2. ZAVALISHCHIN, S. T., SESEKIN, A. N. and DROZDENKO, S. Ye., Dynamical Systems with Pulsed Structure. Sred. Ural. Kn. Izd., Sverdlovsk, 1983.
3. OLENCHIKOV, D. M., Sampled-data control of Lyapunov exponents, 1. Fundament. Prikl. Mat., 2002, 8, 1, $151-169$.
4. OLENCHIKOV, D. M., Sampled-data control of Lyapunov exponents, 2. fundament. Prikl. Mat., 2002, 8, 1, 171-185.
5. KRASOVSKII, N. N., Theory of the Control of Motion. Linear Systems. Nauka, Moscow, 1968.
