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The concept of the universal control of a controllable sampled-data bilinear time-delay system is introduced. A universal control 
is independent of the initial state, and the system may be steered from any initial state at time to to zero at the time tl. A criterion 
of global controllability is obtained. As an example, the control of a two-link oscillatory system is Considered. © 2004 Elsevier 
Ltd. All rights reserved. 

Problems of the control dynamical objects using sampled-data control have many applications. For a 
survey of the main publications on sampled-data systems see [1, 2].~ 

1. D E F I N I T I O N  OF T H E  S O L U T I O N  OF A S A M P L E D - D A T A  L I N E A R  
T I M E - D E L A Y  S Y S T E M  

Definition 1.1. A sampled-data linear time-delay system (a sampled-data system) is defined to be the 
following expression 

k 

= A( t )x+ Z 8 ( t -Z i )H i ( t ) x ( t -O)  
i = 1  

(1.1) 

where x(.) : R ~ C n (or Rn), A(t)  and Hi(t) are square matrices of order n with continuous complex- 
valued or real-valued elements, ~5(-) is the delta function, and Zl -< "c2 < ... < "c~ are the data points. 

The following initial condition is specified at the point to 

X(to) = x o, where to = x0 <xl (1.2) 

Let X(t, s) denote the Cauchy matrix of the system £ = A(t)x. We define the influence matrix of the 
ith pulse as the matrixE + Hi(zi). Intuitively, this means that if x0 is the value of some solution of system 
(1.1) "before" the ith pulse, then (E + Hi('ci))Xo is the value of the solution "after" the ith pulse. Then 
the solution of system (1.1) satisfying the initial condition (1.2) will have the form 

k(t) 

x(t) = X(t, Xk(,)) l"l  [(E + Hi(xi))X(x i, "ci_ ~ )]x 0 
i=1 

where k(t) is the maximum subscript i such that ~i < t. Henceforth the product symbol is understood 
in the sense of left matrix multiplication, that is, I-If= 1 Ai = A k A k -  1 . . .  A 1. Using the Heaviside function, 

tPrikl. Mat. Mekh. Vol. 68, No. 4, pp. 602-610, 2004. 
~See also SESEKIN, A. A., Dynamical systems with non-linear sampled-data structure. Doctorate Dissertation, 01.01.02. Inst. 
Mat. Mekh., Ural'sk Otd. Ross. Akad. Nauk, Ekaterinburg, 1997. 
0021-8928/S--see front matter. © 2004 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.j appmathmech.2004.07.006 
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one can eliminate the function k(t) and give the following equivalent definition of the solution of a 
sampled-data system. 

Definition 1.2 A solution of the sampled-data Cauchy problem (1.1), (1.2) is a function 

k 

x(t) = X(t, "Ck) H [(E + Z(t - ti)Hi('ci))X('Ci, ~i- l ) ]X0  (1.3) 
i=1  

where )~(-) is the Heaviside function: Z(t) = 0 for t < 0, Z(t) = 1 for t > 0. 
At the points "ci the functionx(.) is undefined (if necessary, it may be defined be left or right continuity). 

It is important to note that the definition of a sampled-data system and its solution explicitly involves 
the numbering of the points "ci, which reflects the order of the sequence of pulses. In that connection, 
points "c~ cannot be interchanged even if they coincide, since the product of the corresponding matrices 
E + Hi(xi) is generally non-commutative. This means that a change in the order of the pulses 
concentrated at one data point may change the solution of the system. 

Consider a family of systems 

k 

Yc = a( t )x  + ~ ~ i ( t - -  7Ci)Hi(t)X(TC i - E2) (1.4) 
i = l  

which depend on the numbers ~1, E2, E3, instants of time 7i and functions 5i('), and satisfying the following 
approximation conditions: (1) the functions 8i(') are continuous throughout (--oo, oo); ~)i(t) > 0 for all 
t; ~i(t) = 0 for all t ~ (-ca, e l ) ,  and S~Si(t)dt = 1; (2) e 2 > E 1 > 0; (3) 17 i -- Zi[<-- E 3 for all i = 1, ... , k; 
( 4 )  [ 7 i + 1 -- ~i[ > E1 + E2 f o r  all i - 0, ... , k - 1. 

Condition 1 describes the approximation of a delta function with pulse half-width I1. Condition 2 
means that the value of the solution is measured at a time ~i - e2, and then the pulse in the interval 
[7i - ~1, ~i + fl] is produced on the basis of the measured values, except that the delay E 2 exceeds the 
pulse half-width el. The third condition introduces an estimate of the closeness of the points ~i and % 
The fourth condition means that the next value of the solution is measured after completion of the 
previous pulse. 

Over the interval [to, 71 -- El] all the functions 6i(" ) vanish, and therefore solutions of system (1.4) are 
understood in the classical sense and are identical with the solutions of the system 2 = A (t)x. Moreover, 
the value of the solutionx(~l - t2 )  has already been defined, so that in the interval [71 - e l ,  7t + El] the 
solutions of system (1.4) are also understood in the classical sense. Then, proceeding in a similar way, 
the solutions are defined over the interval [71 + el, 72 -- 11], over the interval [72 -- El, 72 "t- 11] , and so 
o n .  

Definition 1.3. The solutions of system (1.1) are approximated by solutions of system (1.4) uniformly 
on a set I if, for any arbitrarily small E > 0 and any vector x0, numbers rl, r2, r3 and r4 exist such that, if 
[ ~11 < rl, 1 f2 [ < r2, ] f31 < I"3, I )70 - x01 < r4 and the approximation conditions hold, then I ~(t) - x(t) I < f 
for all t in the set L Here £(-) is the solution of system (1.4) with initial conditionx(t0) = ~0, andx(.) is 
the solution of the Cauchy sampled-data system (1.1), (1.2). 

Theorem 1.1. For any r > 0 and T > to, the solution of system (1.1) is approximated by solutions of 
system (1.4) uniformly in the set 

m 

I = [t o , T]\k.)( 'ci-r,  Xi+r) 
i=1  

Proof. Fix arbitrary r > 0 and T > to. Let ~(') be the solution of system (1.4) with initial condition 
X(to) = S0 andx(-) the solution of the sampled-data Cauchy system (1.1), (1.2) defined by formula (1.3). 
For sufficiently small ~1, f2 and e3, the inclusion relation [~i - ~2, zi + fl] C_ ('c z - r, zi + r) holds. Then, 
by the Cauchy formula, for all t ~ I. 

k 

~c(t) = X(t, ~k +fl)H[(X(rci+El, ~i-e2)+ Z(t-'ci)Bi)X(~i-e2, ~i_l +lzl)]X(to +fl,to)Xo (1.5) 
i = l  
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where 

n i = 

~I+E 1 

I ~i(S -- 7~i)X(~i + El' s)Hi(s)ds 

~i -- E2 

Since the Cauchy matrix is continuous, the following relations holds as E 1 ~ 0, E 2 --~ 0, E 3 ~ 0 and 
~i -'-> '17i 

X(t, ~k + e l ) - ~  X(t,'Ck), X(TCi+Ei, TCi-Ez)---) E 

X(TCi- E2, ~i-1 d- El) ~ X('Ci, "Ci_ 1), X(to + El, to) ~ E 

and the convergence is uniform to t on the set L 
Applying the mean-value theorem for integrals to each element of the matrix Bi, we obtain 

~i÷Ei  

ni = P(~) f ~ i (S-~i )ds  = P(~) 

where P(~)  is a matrix whose elements are the values of the elements of the matrices X(~i + el, s)Hi(s) 
at certain points {i, k s [zi - e2, zi + El]. Then, since the matrices X and H are continuous, we conclude 

that the matr ixP(~)  tends uniformly to Hi(xi) as E1 ~ 0, E2 ~ 0, E3 ~ 0 and zi -9 zi. Consequently, Y(t) 
converges uniformly on I to x(t), which proves the theorem. 

An analogous theorem was proved in [3, 4] using the technique of non-standard analysis. 

2. S A M P L E D - D A T A  B I L I N E A R  T I M E - D E L A Y  
C O N T R O L L A B L E  S Y S T E M S  

We shall consider a controllable sampled-data bilinear time-delay system (controllable sampled-data 
system) over the interval I = [to, tl] 

it(t) = A(t)x(t)  + B( t )U( t )x ( t -O)  (2.1) 

whereA(t )  and B(t) = (bl(t), ... , bin(t)) are n × n and n × m matrices with continuous elements, and 
U(') belongs to the set of admissible controls (see the next definition). 

Definition 2.1. An admissible control U(-) is defined as any finite sequence of pairs {(xk, Uk)} p = 1 
such that Uk are m × n matrices and to = % < zl -- "c2 -< ... -< "~p < tl. In that situation we use the formal 
notation 

p 

U(t) = ~., 8(t- 'c~)U k (2.2) 
k= l  

Definition 2.2. A solution of the sampled-data Cauchy system (2.1), (1.2) is, by Definition 1.2, 
a function 

p 

x(t, x o, U) = X(t, Xp) I I  [ (E+  Z(t--xk)B(xk)Uk)X(xk, 'Ck_I)]X 0 
k= l  

Let 
j - 1  

x(xj - O, x o, U) = X('cj, xj_ 1) H [(E + B('Ck)Uk)X('~k, "~k- 1)]x0 
k= l  

denote the value of the solution x(', x0, U) "before" the pulse concentrated at the point "cj. Let  

X('Cj ÷ O, XO, U) = (E + B('Cj)Uj)x(~j - O, Xo, U) 
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denote the value of the solution x(-, x0, U) "after" the pulse concentrated at the point xj. In the case 
when all the "c~ are different, these are simply the left and right limits of the function x(', x0, U) at the 
point xj. 

3. T H E  G L O B A L  C O N T R O L L A B I L I T Y  S E T  

D e f i n i t i o n  3.1. We define the controllability set of system (2.1) on I to be the set of all vectors x0 such 
that X(tl ,  X0, U )  = 0 for some admissible control U. 

Given system (2.1), we construct the sets 

m 

Mj = ~ (X( t  o ,s)bj (s) ) ,  M = ~_~Mj (3 .1)  
s ~  (to, t l )  j =  I 

where the angular brackets denote the linear span of the vector and the summation symbol denotes 
the sum of linear subspaces, understood in the following sense: h e Mj if and only if a finite number of 
points "q, . . . ,  "c., subscripts jl, . . .  ,jq and vectors hi, . . . ,  h~ exist such that tk ~ (to, ta), h = h i  + . . .  + hq,  
w h e r e  hk ~ ~( to ,  "~k)bjk('Ck)). 

L e m m a  3.1. The controllability set of system (2.1) on I is subset of M. 

Proof. Let x0 be an arbitrary vector such that x(tl, x0, U) = 0 for some  admissible control U(t) (2.2). 
For any matrix Uk we have the representation 

m 

(E + B('ck)Uk)x o = x o + ~ Ck, jbj('Ck), col(Ck, 1 . . . . .  Ck, m) = UkXo 
j = l  

Then 

x(~ l - O, x o, U) = X ( z  I, to)X o 

m 
x(x  I + 0, x 0, U) = (E + B ( ' ~  1) U I ) x ( 1 ;  I - 0, X0, U) = X ( ' [  1, to)X o + ~, cl, jbj('¢l) 

j=l  

X('C 2 -  O, XO, U)  = X('C2, "C1)x(171 + O, Xo, U )  

x('l; 2 + 0,  X0, U )  = X('~2, to)X 0 + E [Cl, J X('C2' '[1 )bj(1~l)  + c2, jbj(X2)] 
j = l  

Continuing in the same way, we find by induction that 

p m 

X('Cp + O, XO, U) = X("Cp, to)X 0 + Z Z Ck, jX('~P' "Ck)bj('Ck) 
k = l j = l  

p m 

x(t I, x o, U) = X(t 1, to)Xo + Z E ck, jX(ti' "[k)bY(~k ) = 0 
k = l j = l  

Multiplying the last equality on the left by X(t0, tt), we get 

in p 

X o = -- ~ ~ ,  Ck, jX<tO, Xk)bjCXk) 
k = l j = l  

Consequently,  Xo ~ M. 

L e m m a  3.2. An admissible control U exists such t h a t x ( q ,  Xo, U) = 0 for allx0 ~ M. 

Proof. Since M C ~n, it follows that a numberp  _< n, points xl . . . . .  xp in [to, tl], and subscripts j l  . . . . .  jp exist such 
P P that M = ~ i  = 1 ~ t r ~ 0 ,  "ci)bj~('Ci)); in addition, the system of vectors {X(t0, "ci)bjf'ci)}i = 1 i s  linearly independent.  
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Consider the control 

U(t)  = 
P 

k = l  

in which all the rows of the matrices Uk except thej~th consist of zeros, while thejkth row is (~k, 1 . . . . .  ak,,), where 
c~k,j are numbers satisfying the linear system of equations 

(~k, I . . . . .  O~k, n)( X('Ck' "~k)bjk('Ck) . . . . .  X('~k, "Cp)bjr(Xp) ) = (-1, 0 ..... 0) (3.2) 

Since the system of vectors {X(to, xi)bj(xi)}Pi= i is linearly independent, the system {X(xk, xi)bj(xi)}~= ~ is also linearly 
independent. Consequently, system ~3.2) is solvable, that is, a control U exists (though it n'eed not be unique). 

By the construction of the control U, we obtain 

B( xk)U~ = bj~ (Xk)(~tk, 1 . . . . .  % ,n )  

-1, 
(~Xk, 1 . . . . .  O~k. n)X('Ck, x~)bj~(Xi) = 0, 

Then 

if i =  k 

if i > k  

0, if i = k 

(E + B('Ck)Uk)X(~ k, xi)bj,(zi) = X('¢ k, "¢i)bj,('¢i), if i > k (3.3) 

Let x0 ~ M be an arbitrary vector. Then, using relation (3.3), we get 

P 
x(xl - 0, x 0, U) e ~ (X(xl, ~k)bj~(~k)> 

k = l  

P 
x (x  t + O, x o, U) = (E + B ( x l ) U  ~)x(x I - O, x o, U) e ~ ,  (X('cl,  xk)bA(xk) ) 

k=2 

P 
X(I: 2 - 0, X0, U) = X(x2, ' [ i )x( ' [ l  + 0, x0, U) • ~ (X('~2, "¢k)bj,('Ck)) 

k=2 

P 
X('~ 2 + 0, X0, U) = ( E +  B( ' t2 )U2)x ( ' t  2 - 0, x0, U) e ~.~ (X('C2, "¢k)bjk('Ck)) 

k=3 

X('Cp - O, X0, U) • (X (~p ,  "~p)bjp('Cp)) = (bjp('Cp)) 

x(xp + O, x o, U) = (E  + B(xp)Up)x (xp  - 0 ,  x o, U) e {0} 

x ( t  1, x o, U) = X ( t  I, "¢p)x(tp + O, x O, U) = 0 

Since x0 was an arbitrary vector, this proves the lemma. 

T h e o r e m  3.1. The set M is the controllability set of system (2.1) on L Moreover, an admissible control 
U exists such that x ( t l ,  x0, U) = 0 for all x0 ~ M. 

The assertion of Theorem 3.1 follows from the two preceding lemmas. 
Theorem 3.1 implies that in sampled-data systems, unlike the classical case, a single admissible control 

U exists that will steer the system from any initial state in M at time to to zero at time tl, and moreover 
neither the times "¢k nor the matrices Uk occurring in U depend on the initial state x0. In order to 
emphasize this fact, we shall call the controllability set the global controllability set, and the control U 
in the assertion of Theorem 3.1 will be called a universal control. 

Note that the proof  of Theorem 3.1 readily implies a constructive way of obtaining a universal 
control U. 

Def in i t ion  3.2. System (2.1) is said to be globally controllable on I if its global controllability set is ~n. 

D e f i n i t i o n  3.3. We shall say that a system is globally controllable over the interval [to - 0, tl + 0] if it 
is globally controllable over any interval [70, tl] such that t0 < to and t l  > tl. 
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Consider  the matr ix  

D n = 

f l , j , ( ' [ l )  f l , j 2 ( ' t 2 )  . . .  f l , j ( 'Cn)  

f 2 ,  j , ( ' ~ l )  f 2 ,  h ( ' g 2 )  . . .  fz ,  j (Zn)  

fn, jl("C1) fn, j2('C2) ... fn, j ('Cn) 

L e m m a  3.3 (on linearly independent  functions). A necessary and sufficient condition for  the functions 
f l ( t ) , f z ( t )  . . . .  , fn(t): I ~ ~m t o  be linearly independen t  over  the set I is that  points  "q . . . . .  "on ~ I and 
subscripts Jl . . . .  , Jn exist such that  de tD n ~ 0. 

Proof. Sufficiency is obvious. We will prove necessity by induction on n. The assertion is obvious for n = 1. 
Supposing it is true for n < k, we prove it for n = k. Let the system of functions {fi(t)}/k= 1 be linearly independent 

.f,[ -tk - 1 of I. Consequently, by the induction hypothesis, system of points t ili = 1 and subscripts {ji}k-~ ~ exist such that 
detDk- 1 ~ 0. Then the last row of the matrix 

f l,j, "" f l, jk_,("Ck-1) 

fk,  j, "'" fk, j,_,('Ck-1) 

may be expressed uniquely as a linear combination of the preceding rows. Denote the coefficients of this linear 
combination by cl . . . . .  ck-1. Since the functions fa . . . . .  fk are linearly independent of / ,  a point xk ~ I exists such 
that 

f k(zk) ~ c l f  l("Ck) +"" + CI¢- l f  k- l(Zk) 

Then there is a subscriptjk such that 

fk, jk('Ck) :/: clfl,jk('~k) +"" + Ck- 1,Afk- l(Xk) 

Consequently, since the coefficients ci are unique, the rows of the matrix Dn are linearly independent, and its 
determinant does not vanish. 

Now consider the rows the matrixX(to, s)B(s) as functions of  the variable s. Taking a max imum linearly 
independen t  subsystem of  rows in the interval [to, tl], we express X(to, s)B(s)  as 

X(  to, s )B( s )  = h l f  l (s  ) + h 2 f  2(s ) + ... + h q f  q(S) 

where  hi, ... , hq are certain constant  vectors and the row-functionsfl( . ) ,  ... ,fq(.) are linearly independent  
in the interval [to, tl]. 

Theorem 3.2 The  global controllabil i ty set M is the l inear  span (hi, . . . ,  hq). 

Proof. By formula  (3.1) it is obvious t h a t M  C (hi, . . . ,  hq). We will p rove  that  (hi, . . . ,  hq) c M.  Let  
h be an arbitrary vector  such that  h = alha + ... + O~qhq. Since the functionsf~(.) are linearly independent ,  
it follows by L e m m a  3.3 that  points  Sl, . . . ,  Sq and subscripts j l ,  ... ,jq exist such that  the matr ix  

D = 
f l , j , (S l )  ... f l (Sq,  jq) 

fq, jl(Sl) ... fq(Sq, jq) 

is non-singular.  T h e n  

q 
X(to' sk)bA(sk) = Z hifi ,  Jk (sk) 

i = 1  
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Ix(t) m2 

ly ( t )  m 1 

f f f f f f f f 

Fig. 1 

Equating the coefficients of the vectors hi, we get 
q 

h = Z ckX(to' sk)bjk(sk) 
k = l  

where the constants c~ satisfy the linear system of equations 

Dcol(q . . . . .  eq) = col(tx 1 . . . . .  O~q) 

Consequently, h ~ M? 

Theorem 3.3. The sampled-data system (2.1) is globally controllable over the interval [to, tl] if and only if 
the corresponding classical system 2 = A(t)x  + B(t)u(t) is completely controllable over the interval [to, ta]. 

Proof. It follows from Theorem 3.2 that system (2.1) is globally controllable over I if an only if the 
rows of the matrix X(to, s)B(s) are linearly independent over L By Krasovskii's criterion [5], linear 
independence of the rows of the matrix X(to, s)B(s) is equivalent to complete controllability of the 
classical linear control system 2 = A( t )x  + B(t)u(t) .  

Corollary. Over any interval [to, tl] the global controllability set of a stationary sampled-data system. 

R(t) = Ax( t )  + B U ( t ) x ( t - O )  

is the linear span of the columns of the matrices B, A B ,  AZB . . . . .  A n-  lB. 

Example. Consider the construction illustrated in Fig. 1, consisting of two oscillating elements. Here 
ma and m 2 denote the masses of the elements, kl and k 2 are the stiffnesses, and el and c2 are the viscosity 
coefficients. 

Letx  andy denote the displacements of the masses ml and m2 relative to their equilibrium positions. 
By Newton's second law, the motion of the construction is described by the following system of equations 

m2£ = - k2(x - y) - c2(~ - 3~) 

rely = - k ly  - cl~ + k2(x - y) + c2(.~ - 3}) + F(t)  

Putting z = col(x, 2, y, 3~) and u(t) = F(t) /ml,  we arrive at a system of linear fourth-order differential 
equations ~ = Az + u(t)B, where 

A = 

0 1 0 0 

k2 c2 k 2 c 2 

m 2 m 2 m 2  m 2 

0 0 0 1 

k2 c 2 k 1 + k 2 c I + c 2 

m I m 1 m !  m I 

, B =  II!il 



544 D.M.  Olenchikov 

2 

Z2 \ 
\ \  \ 

I 
I 

. _..111 / 

I 
f 

2 

-2 
Z] 

¢,.J 

-2  0 ~ 2  -1 0 1 z3 

Fig. 2 

We construct a control u(t) according to the feedback principle, that is 

u(t) = U(t)z(t-  O) 

We then obtain the closed-loop system 

2(t) --- az(t) + BU(t)z( t -  0) (3.4) 

Fix the parameter values of the construction as 

m I = 1 0 ,  m 2 = 7 ,  k I = 1 0 ,  k 2 = 8 ,  c I = 0 . 1 ,  C 2 = 0.2 

By the Corollary to Theorem 3.3, system (3.4) will be globally controllable over any interval. We fix the 
initial time and data times as 

t o ---- 0, 171 = 4, 172 = 5, 173 = 6.5, 17 4 = 8 

We construct a universal control (2.2) (p = 4) by the method described in the proof of Lemma 3.2. We 
obtain 

U l --- (0.4694, -0.3791, -0.6823, -1) 

U 2 =- (0, 0.6026, 1.0073,-1 ) 

U s -- ( 0 ,  0 ,  0 . 4 1 8 6 , - 1 )  

U 4 = (0, 0, 0, -1 ) 

In Fig. 2 we show the trajectories of system (3.4) corresponding to the initial condition z(0) = col(0, 
1.6, 0.8, 1.6) (the solid curves), and the trajectories for the initial condition z(0) = col(0, 1.6, 0.8, -1.6) 
(the dashed curves). 
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